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Pearson Global Indicator and the Quantum
Mechanics of p-Dimensional Systems
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We extend the results of Guiasu (1992a) to p-dimensional systems. We use
quantum mechanics in order to extend the basic mathematical model from Guiasu
(1992a) to systems with more dimensions. Two multidimensional quantum
systems are presented as applications of the mathematical results (the
p-dimensional isotropic harmonic oscillator and the free particle in a
p-dimensional box).

INTRODUCTION

Guiasu (1992a) derives SchroÈ dinger’ s equation considering the optimum

Pearson function to be the wave function of the system. The optimum Pearson

function x * minimizes the Pearson global indicator subject to the constraints

represented by some given mean fluctuations.

The steady-state condition of a quantum system is characterized by the

probability distribution u that maximizes Shannon’ s entropy and complies
with the restrictions represented by some mean values known from macro-

scopic measurements. If random fluctuations alter the steady-state condition,

then the most unbiased probability distribution u no longer correctly describes

the quantum system. Such a change can be detected by assigning a sequence

of orthonormal functions with the weight u. As long as the system is in the
steady-state condition, the mean value of each orthonormal function is equal

to zero. If at least one of these mean values is not zero, then the steady state

of the system has been altered.
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Further we estimate the probability distribution of the fluctuations subject

to the mean values detected and which minimizes Pearson global indicator ^ x 2 &
(Pearson mean deviation). We estimate therefore the probability distribution of
the fluctuations which is the closest to the steady-state probability distribution

and subject to some given mean values of the fluctuations which are obtained

by calculating the mean values of the orthonormal functions with the weight

u assigned to the quantum system.

The optimum Pearson function x * that minimizes the Pearson indicator

^ x 2 & satisfies SchroÈ dinger ’ s equation if we consider classical quantization
rules.

This probabilistic model presented in Guiasu (1992a) is applied to the

one-dimensional harmonic oscillator, the free particle in the box [0, a], and

the hydrogen atom. The extension of the results from Guiasu (1992a) to

p-dimensional systems is based on some important results of quantum

mechanics.

1. OPTIMUM PEARSON FUNCTION x *

If f and g are two square-integrable functions on D , R [ f, g P L2(D)],

we define the scalar product between the two functions with the weight u
as follows:

^ f | g & u 5 # D

f(x)g(x)u(x) dx

In the above equality, the integral is considered with respect to the Lebesgue

measure on the real axis. If u(x) 5 1, " x P D, then we write ^ f ) g & 1 5 ^ f ) g & .
We consider a p-dimensional quantum system and let X1, X2, . . . , Xp

be the random variables describing the p characteristics of the quantum

system, D1, D2, . . . , Dp be the ranges of the above-mentioned random vari-
ables, and u1, u2, . . . , up be the probability distributions that describe the

random variables in the steady±state.

We emphasize that X1, X2, . . . , Xp are independent random variables

and the probability distribution u 5 u1u2 . . . up describes the p-dimensional

system in the steady±state.

Let us also consider the following p sequences of orthonormal functions:

V (1) 5 {U (1)
n1 , n1 5 0, 1, 2, . . .} is a sequence of orthonormal functions

in L2(D1) with the weight u1 and U (1)
0 5 1.

V (2) 5 {U (2)
n2 , n2 5 0, 1, 2, . . .} is a sequence of orthonormal functions

in L2(D2) with the weight u2 and U (2)
0 5 1.

:
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V (p) 5 {U ( p)
np , np 5 0, 1, 2, . . .} is a sequence of orthonormal functions

in L2(Dp) with the weight up and U ( p)
0 5 1.

We have

^ U ( j)
nj ) U ( j)

n8j & uj 5 d n8
j

nj
, j 5 1, p, where d n8

j
nj 5 H 1 for nj 5 n8j

0 for nj Þ n8j

We also consider the system of functions

V 5 {U (1)
n1 U (2)

n2 . . . U (p)
np , n1 5 0, 1, 2, . . . , n2 5 0, 1, 2, . . . ,

. . . , np 5 0, 1, 2, . . .}

This system of functions is orthonorma l in L2(D1 3 D2 3 . . . 3 Dp) with

the weight u 5 u1u2 . . . up. Indeed

^ U (1)
n1 U (2)

n2 . . . U ( p)
np ) U (1)

n81 U (2)
n82 . . . U ( p)

n8p & u1u2...up

5 ^ U (1)
n1 ) U (1)

n81 & u1 ^ U
(2)
n2 ) U (2)

n82 & u2 . . . ^ U ( p)
np ) U ( p)

n8p & up 5 d n8
1

n1 d n8
2

n2 . . . d n8
p

np (1)

The above relation is a consequence of Fubini’ s theorem in the case of the

integrate equal to a product of functions depending each on only one variable.
If random fluctuations alter the steady-state condition of the system, then

the random variables X1, X2, . . . , Xp become dependent and the probability

distribution u 5 u1u2 . . . up no longer accurately describes the behavior of

the quantum system. Let f be the new common probability distribution that

describes the quantum system. Let us consider fluctuations of type
U (1)

n1 U (2)
n2 . . . U (p)

np with n1 5 1, N1, n2 5 1, N2, . . . , np 5 1, Np, where Nj ,

j 5 1, p, are fixed natural numbers.

Further let us assume that the induced mean fluctuations are given, i.e.,

^ U (1)
n1 U (2)

n2 . . . U ( p)
np ) f & 5 Cn1n2 ...np with nj 5 1, Nj, j 5 1, p (2)

At this point we determine the probability distribution f * which is the closest

to u 5 u1u2 . . . up subject to the restrictions from (2). According to Guiasu

(1992a), the closeness is measured by Pearson’ s global indicator:

^ x 2( f :u) & 5 ^ x 2( f :u) ) 1 & 5 K ( f 2 u)2

u Z 1 L 5 K 1 f

u
2 1 2

2

Z u L (3)

Therefore f* is the solution of the variational problem
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5 min
f

^ x 2( f :u) &

^ U (1)
n1 U (2)

n2 . . . U ( p)
np ) f & 5 Cn1n2 ...np, nj 5 1, Nj , j 5 1, p

(4)

Extending the results from Guiasu (1992b), Guiasu et al., (1982), and Kull-

bach and Leibler (1951) to the p-dimensional case, we have

f* 5 u ? F 1 1 o
N1

n1 5 l
o
N2

n2 5 l

? ? ? o
Np

np 5 l

Cn1n2...npU
(1)
n1 U (2)

n2 ? ? ? U ( p)
np G (5)

Since 1 P V ( j), j 5 1, p, it can be easily deduced that f * is a probability

distribution.

From (3) and (5) we get the optimum Pearson function x *:

x * 5 x ( f*:u)

5 1 f*

u
2 1 2 ? ! u

5 ! u ? o
N1

n1 5 l
o
N2

n2 5 l

? ? ? o
Np

np 5 l

Cn1n2...npU
(1)
n1 U (2)

n2 ? ? ? U ( p)
np (6)

We shall prove further that the probability distribution f* from (5) minimizes

the Pearson global indicator from (3). Indeed, if the orthonormal sequence

V is complete in L2(D1 3 D2 3 . . . 3 Dp), we can write the following

Fourier series (Precupanu, 1976):

f

u
5 o

`

n1 5 l
o
`

n2 5 l
? ? ? o

`

np 5 l K f

u Z U (1)
n1 U (2)

n2 . . . U ( p)
np L u ? U (1)

n1 U (2)
n2 . . . U ( p)

np

Hence

f 5 u ? o
`

n1 5 l
o
`

n2 5 l
? ? ? o

`

np 5 l
^ f ) U (1)

n1 U (2)
n2 ? ? ? U ( p)

np & ? U (1)
n1 U (2)

n2 ? ? ? U ( p)
np

5 u ? o
N1

n1 5 l
o
N2

n2 5 l

? ? ? o
Np

np 5 l

^ f ) U (1)
n1 U (2)

n2 ? ? ? U ( p)
np & ? U (1)

n1 U (2)
n2 ? ? ? U ( p)

np 1 u ? W

5 u ? o
N1

n1 5 l
o
N2

n2 5 l

? ? ? o
Np

np 5 l

Cn1n2...np ? U
(1)
n1 U (2)

n2 ? ? ? U ( p)
np 1 u ? W

5 f* 1 u ? (W 2 1)
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where W is a finite sum of p-uple series in which at least one summation

index nj is greater than Nj.

We have

^ f * 2 u ) W & 5 0 (7)

because at least one orthonormal function U ( j)
nj from the expression of f * 2 u

(nj # Nj) is different from any orthonormal function U ( j)
nj from the expression

of W (nj . Nj). We shall calculate the Pearson global indicator taking into

consideration (7) and the relation ^ f* 2 u ) 1 & 5 ^ f * ) 1 & 2 ^ u ) 1 & 5 1 2 1 5 0,

which is true since f* and u are two probability distributions:

^ x 2( f :u) & 5 K 1 f

u
2 1 2

2

Z u L 5 K 1 f* 1 u(W 2 1)

u
2 1 2

2

Z u L
5 K 1 f*

u
2 1 2

2

Z u L 1 ^ (W 2 1)2 ) u & $ K 1 f*

u
2 1 2

2

Z u L
5 ^ x 2( f*:u) & QED

Considering (6) and (1), the normed optimum Pearson function x *
becomes

C * 5 1 o
N1

n1 5 l
o
N2

n2 5 l

? ? ? o
Np

np 5 l

C 2
n1n2...np 2

2 1/2

! u1u2 . . . up

o
N1

n1 5 l
o
N2

n2 5 l
? ? ? o

Np

np 5 l
Cn1n2...npU

(1)
n1 U (2)

n2 ? ? ? U ( p)
np (8)

Thus ( C *)2 is a probability distribution induced by the minimization of the

Pearson global indicator and which expresses the deviation of the quantum

system from the steady±state due to the fluctuations U (1)
n1 U (2)

n2 ? ? ? U ( p)
np having

the mean values Cn1n2...np. Since C * is a normed square-integrable function,

it satisfies the necessary conditions to be a wave function (Messiah, 1973).

2. HEISENBERG’S UNCERTAINTY RELATIONS

For the function C * determined in (8) we shall prove Heisenberg’ s

uncertainty relations in the manner done in Messiah (1973). In order to do

that we will introduce the momentum operator.
In quantum mechanics to any dynamic variable a (position coordinate,

momentum, energy, etc.) there is assigned a linear operator A, and the mean

value taken by the dynamic variable a in the state defined by the function

C * is given by the relation
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aÅ 5 ^ C * ) A C * & (9)

So, according to the principle of correspondence (Messiah, 1973), to the

momentum pj there is assigned the linear operator P j 5 2 i " - / - xj (the

momentum operator), where xj is a position coordinate, i2 5 2 1, and

" 5 h/2 p with h Planck’ s constant, and j 5 1, p. We have the following
two formulas:

pj 5 ^ C * ) Pj C * & 5 K C * Z 2 i "
-

- xj

C * L , j 5 1, p (10)

p2
j 5 ^ C * ) P2

j C * & 5 K C * Z 2 " 2 - 2

- x2
j

C * L , j 5 1, p (11)

We build the operator

Fj 5 D xj 1 l i D pj (12)

where D xj 5 xj 2 xj, D pj 5 pj 2 pj 5 2 i " - / - xj 2 pj, l P R.

We use the following notations for the variances of the distributions of
the coordinate xj and momentum pj:

s xj 5 ! ( D xj)
2 5 ! x2

j 2 xj
2, s pj 5 ! ( D pj)

2 5 ! p2
j 2 pj

2, j 5 1, p

In order to deduce Heisenberg’ s uncertainty relations for the function C *,

we will start from the following positively defined expression:

Ij ( l ) 5 # D1 # D2

. . . # Dp

) Fj C * ) 2 dx1 dx2 . . . dxp $ 0 " l P R, j 5 1, p

(13)

Integrating by parts in the relation (13) and taking into account (10), (11),

and the fact that the function C * is square-integrable, we obtain

Ij ( l ) 5 ( s xj)
2 2 l " 1 l 2( s pj)

2, j 5 1, p (14)

Therefore

( s xj)
2 2 l " 1 l 2( s pj)

2 $ 0 " l P R, j 5 1, p

Û " 2 2 4( s xj)
2( s pj)

2 # 0, j 5 1, p

Þ s xj ? s pj $
"
2

, j 5 1, p (15)

Therefore, Heisenberg’ s uncertainty relations, s xj ? s pj $ " /2,

j 5 1, p, are a consequence of the properties of the function C * (square-
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integrable) and the manner in which the momentum operator is defined. We

underline the fact that up to this moment no reference has been made to

SchroÈ dinger ’ s equation; thus Heisenberg’ s relations are valid for the function
C * found in Section 1 and for which we have not shown yet that it is a

wave function: C * does satisfy the SchroÈ dinger equation only if the classical

quantization rules hold. This fact will be emphasized in Sections 3 and 4.

3. SCHROÈ DINGER’S EQUATION

In this section we will show that the function C * from (8) behaves like

a wave function, i.e., it satisfies SchroÈ dinger ’ s equation, if we use classical

quantization rules. This result is demonstrated in Guiasu (1992a) for the one-

dimensional case and we will extend it to the p-dimensional case in this paper.

The SchroÈ dinger equation for a p-dimensional system is

D C 2
1

" 2 k C 5 0 (16)

where C is the wave function that describes the behavior of the quantum
system [any macroscopic measure can be calculated as a mean value according

to (9)], D 5 - 2/ - x2
1 1 - 2/ - x2

2 1 . . . 1 - 2/ - x2
p, and k 5 2m(V 2 E ) with m

the mass of the quantum system, V the potential energy, and E the total energy.

By placing C * from (8) into the SchroÈ dinger equation (16), we get

o
p

j 5 1 H ! u o
N1

n1 5 1
o
N2

n2 5 1
? ? ? o

Np

np 5 1
Cn1n2...npU

(1)
n1 U (2)

n2 ? ? ? U ( p)
np

3 F 2
(u8j )

2

4u2
j

1
u9j

2uj

1
u8j

uj

(U ( j)
nj )8

U ( j)
nj

1
(U ( j)

nj )9

U ( j)
nj G J

2
1

" 2 k ! u o
N1

n1 5 1
o
N2

n2 5 1

? ? ? o
Np

np 5 1

Cn1n2...npU
(1)
n1 U (2)

n2 ? ? ? U ( p)
np 5 0 (17)

In what follows we shall assume that the parameter k complies with

the condition

k 5 o
p

j 5 1

kj (18)

where kj depends only on the variable xj , i.e., the constant k can be written

as a sum of components each of which depends on only one variable.
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According to Messiah (1973), condition (18) is equivalent to

V 5 o
p

j 5 1
Vj where Vj 5 Vj (xj) (19)

[This condition is taken from quantum mechanics and it allows us to develop

further the mathematical calculations. It applies to a rather limited number

of quantum systems. However, these quantum systems are of essential impor-

tance from a theoretical point of view because condition (18) is necessary

for finding exact solutions for SchroÈ dinger ’ s equation. Despite the restricted
applicability, the mathematical model presented in this paper yields great

relevance as will be seen from the examples presented in Section 4.]

Assuming that condition (18) is satisfied, relation (17) becomes

! u o
N1

n1 5 1
o
N2

n2 5 1

? ? ? o
Np

np 5 1

Cn1n2...npU
(1)
n1 U (2)

n2 ? ? ? U ( p)
np

3 o
p

j 5 1 F 2
(u8j )

2

4u2
j

1
u9j

2ui

1
u8j

ui

(U ( j)
nj )8

U ( j)
nj

1
(U ( j)

nj )9

U ( j)
nj

2
1

" 2 kj G 5 0 (20)

Hence

u2
j (U ( j)

nj )9 1 uju8j (U ( j)
nj )8 1 F 1

2
uju9j 2

1

4
(u8j )

2 2
1

" 2 kju
2
j G ? U ( j)

nj 5 0,

j 5 1, p (21)

For any orthonormal set V ( j) of polynomials with the weight uj the following

second-order differential equation is satisfied (Guiasu, 1992a):

g( j)
2 (xj)[U ( j)

nj (xj)]9 1 g( j)
1 (xj)[U ( j)

nj (xi)]8 1 g( j)
0 (xj)U

( j)
nj (xj) 5 0

nj 5 1, Nj, j 5 1, p (22)

Thus C * satisfies the SchroÈ dinger equation if

g( j)
2 5 u2

j , g( j)
1 5 uju8j ,

g( j)
0 5

1

2
uju9j 2

1

4
(u8j )

2 2
1

" 2 kju
2
j , j 5 1, p (23)

In Section 4 we shall see that, in the particular cases of two p-dimensional
quantum systems, the relations (23) are satisfied if we take into account the

classical quantization rules.

We point out that the results obtained above are analogous to those for

the one-dimensional case presented in Guiasu (1992a).
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4. EXAMPLES OF p-DIMENSIONAL QUANTUM SYSTEMS

We shall discuss two examples of p-dimensional quantum systems and
we will estimate the wave function C * from (8). We will also show that C *

satisfies SchroÈ dinger ’ s equation if we consider the classical quantization

rules. For the two quantum systems presented we will check that the condition

(18) is satisfied.

Let us consider Xj , j 5 1, p, the position coordinates of a quantum

particle of mass m, and Dj , j 5 1, p, the ranges of the random variables Xj .

4.1. The p-Dimensional Isotropic Harmonic Oscillator

For the p-dimensional isotropic harmonic oscillator the elongation Xj

ranges over D j 5 ( 2 ` , 1 ` ). Let m j be the mean value of Xj and let s 2
j be

the variance of X j. The steady-state condition that maximizes the entropy

subject to the mean values m j and s 2
j is described by the normal distribution

(Guiasu, 1977)

uj (xj) 5
1

s j ! 2 p
e 2 (xj 2 m j)

2/2 s 2
j , 2 ` , xj , 1 ` (24)

The corresponding orthonormal set of polynomials with the weight uj is

(Guiasu, 1992a)

U ( j)
nj (xj) 5

1

! 2njnj!
Hnj 1 xj 2 m j

s j ! 2 2 , nj 5 0, 1, . . . (25)

where Hn(x) is the Hermite polynomial of degree n (Teodorescu and
Olariu, 1978).

If random fluctuations alter the steady±state, then the induced mean

fluctuations are not equal to zero. Let us assume that only Cn1n2 . . . np Þ
0, the rest of the induced mean fluctuations being equal to zero. Then the

normed optimum Pearson function from (8) becomes

C *n1n2...np(x1, x2, . . . , xp)

5 &
p

j 5 1 F 1

! s j ! 2 p
e 2 (xj 2 m j)

2/4 s 2
j

1

! 2njnj!
Hnj 1 xj 2 m j

s j ! 2 2 G (26)

Considering m j 5 0, s 2
j 5 s 2, j 5 1, p, the function derived in (26)

satisfies the partial differential equation (Guiasu, 1992a)
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D C *n1n2...np 1
1

s 2 F 1 n1 1 n2 1 . . . 1 np 1
p

2 2
2

x2
1 1 x2

2 1 . . . 1 x2
p

4 s 2 G C *n1n2...np 5 0 (27)

For the p-dimensional isotropic harmonic oscillator (Messiah, 1973) the

potential energy is given by

V 5
1

2
m v 2r 2 5

1

2
m v 2(x2

1 1 x2
2 1 ? ? ? 1 x2

p) 5 o
p

j 5 1

1

2
m v 2x2

j 5 o
p

j 5 1

Vj

Vj 5
1

2
m v 2x2

j

where v is the pulsation of the classical oscillator (constant). Therefore the

condition (18) is satisfied. The SchroÈ dinger equation (16) becomes

D C 1
2m

" 2 1 E 2 o
p

j 5 1

1

2
m v 2x2

j 2 C 5 0 (28)

Equation (27) becomes SchroÈ dinger ’ s equation (28) if we assume the

quantization rules from quantum mechanics (Messiah, 1973):

s 2 5
"

2m v
, E 5 " v 1 n1 1 n2 1 ? ? ? 1 np 1

p

2 2 (29)

In this p-dimensional case, the wave function C (x1, x2, . . . , xp) 5
C *n1n2...np(x1, x2, . . . , xp) from (26) depends on p quantum numbers n1, n2,

. . . , np that can take any integer value between 0 and 1 ` , but the correspond-

ing value of the energy E 5 " v (n1 1 n2 1 ? ? ? 1 np 1 p/2) depends only

on the sum n 5 n1 1 n2 1 ? ? ? 1 np. For a given value of the sum n there
exist C p 2 1

n 1 p 2 1 5 (n 1 p 2 1)!/[n! ( p 2 1)!] different possible values for the

sequence of integer numbers n1, n2, . . . , np. Therefore the value of the energy

En 5 " v (n 1 p/2) has an order of degeneracy equal to Cp 2 1
n 1 p 2 1.

4.2. The Free Particle in the p-Dimensional Box

In this case the random variable Xj ranges over Dj 5 [0, aj]. Because

the particle is supposed to be free, there are no other constraints imposed on

the random variable X j . The maximization of the entropy is satisfied by the

uniform distribution (Guiasu, 1977)
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uj (xj) 5
1

aj

, 0 # xj # aj (30)

The corresponding orthonormal set of functions with the weight uj is

(Guiasu, 1992a)

U ( j)
0 (xj) 5 1, U ( j)

nj (xj) 5 ! 2 sin
nj p xj

aj
, nj 5 1, 2, . . . (31)

The steady±state described by u 5 P p
j 5 1 uj is changed by random fluctua-

tions. Assuming further that only Cn1n2...np Þ 0, all the rest of the induced

fluctuations being equal to zero, the normed optimum Pearson function from

(8) becomes

C *n1n2...np(x1, x2, . . . , xp) 5 &
p

j 5 1 ! 2

aj

sin
nj p xj

aj

(32)

The function from the previous relation satisfies the partial differential equa-

tion (Guiasu, 1992a)

D C *n1n2...np 1 1 n2
1

a2
1

1
n2

2

a2
2

1 . . . 1
n2

p

a2
p 2 p 2 C *n1n2...np 5 0 (33)

For the free particle in the p-dimensional box (Messiah, 1973) the

potential energy is given by

V 5 0, 0 # xj # aj , j 5 1, p

or

V 5 o
p

j 5 1

Vj , Vj 5 0, 0 # x j # aj

Thus the condition (18) is satisfied. The SchroÈ dinger equation (16) becomes

D C 1
2m

" 2 E C 5 0, 0 # xj # aj , j 5 1, p (34)

Equation (33) becomes SchroÈ dinger ’ s equation (34) if we assume the

quantization rules from quantum mechanics (Messiah, 1973):

E 5
" 2 p 2

2m 1 n2
1

a2
1

1
n2

2

a2
2

1 . . . 1
n2

p

a2
p 2 (35)

The value of the energy E is not degenerate in general. If aj 5 a,

j 5 1, p, i.e., the particle is in a p-dimensional cube, then the value of the
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energy E 5 ( " 2 p 2/2ma2)(n2
1 1 n2

2 1 . . . 1 n2
p) has an order of degeneracy

equal to p!.

5. CONCLUSIONS

In this paper, the wave function that describes a p-dimensional quantum

system is deduced from a variational problem implying the minimization of

the Pearson global indicator. The SchroÈ dinger equation is obtained as a

consequence. In this way, interpreting the square of the absolute value of the
wave function as the probability distribution of the position coordinates

of a quantum system yields a much larger significance in the context of

information theory.

Heisenberg’ s uncertainty relations are satisfied by the optimum Person

function before it satisfies SchroÈ dinger’ s equation.
The normed optimum Pearson function behaves like a wave function,

i.e., it satisfies the SchroÈ dinger equation if we assume the quantization rules

from quantum mechanics. As significantly expressed in Guiasu (1992a), the

classical quantization rules seem to be ª the bridge between the unbiased
probabilistic model built up and some physical characteristics of the quantum
system involved.º

The applicability of the theory is restricted to those quantum systems

satisfying condition (18). The extension to quantum systems with no exact

solution of the SchroÈ dinger equation remains an open problem.

In the present paper, the applicability of the mathematical model is

proven for two p-dimensional quantum systems of great interest: the p-

dimensional isotropic harmonic oscillator and the free particle in a p-dimen-
sional box.
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